Adjusting Fairfax BIBI scores to account for natural variability

JONATHAN WITT, ECOLOGIST FAIRFAX COUNTY STOMWATER PLANNING WATERSHED PLANNING AND ASSESSMENT BRANCH

Goals: Thinking about natural variability

- It's worth attempting to quantify sources of inter-annual, and inter-site variability, and measure their effects on metrics
- Natural variability can confound our understanding of anthropogenic impacts
- Present an approach for normalizing some of that unaccounted for variability

Natural variability: Habitat

- Stream slope and drainage area:
 - Stream velocity
 - Discharge
 - Frequency of riffles
- Ecoregions / Provinces
- Soils and Nutrients, e.g., Triassic Basin
- Substrate
- Vegetation

Many are confounded with urbanization (e.g., substrate)

Drainage area and ecoregion are frequently classifiers in BCG and multimetric indices.

Many variables are built into O/E models.

Natural variability: Hydroclimate

- Precipitation
- Baseflow
- Air Temp
- Water Temp
- Annual and Seasonal Variability

Climate Variability in Fairfax County

Objectives

- 1. Perform a regression of the Fairfax County reference and trend sites against physical and climate variables not considered in the BIBI.
- 2. Adjust BIBI scores to account these sources of natural variability.
 - E.g., if larger drainage area trend sites tend to have better BIBI scores, boost scores for smaller drainage area sites
 - E.g., if hot dry summers depress the BIBI, boost scores for years those condition occur
 - Goal is to provide better resolution when considering the urban gradient and comparing between sites
 - Think "bowling handicap"
- 3. Test model performance on probabilistic, non-trend, monitoring sites.

Data Sources:

- Fairfax County Macroinvertebrate Piedmont BIBI
- 18 Reference Trend Sites
 - ▶ 12 Piedmont
 - 2 Coastal Plain
 - 4 Triassic Basin
- 20 USGS Trend Sites
 - Piedmont, Coastal Plain, and Triassic Basin
- 241 trend sites from 2004 2015
 471 probabilistic sites from 2004 2015

Physical Variables

- Log Drainage Area (ft²)
- Sqrt Slope (%): Associated with NHDPlus V2.1 catchments

Dummy Variables

Because we opted to include more trend sites from outside Piedmont reference condition we included some additional variables to correct for urban trends and physiographic effects.

- Sqrt Impervious (%) in the drainage area
- USGS Trend Site (yes: 1, no: 0)
- Piedmont (yes: 1, no: 0)
- Year (2004 2015)

Climate Variables: PRISM 4 km² Rasters

Macroinvertebrates are collected in the spring, so seasonable variables extend a year back

Spring	precip (mm) and air temp (C)	e.g. MAM 2006
Winter	precip (mm) and air temp (C)	e.g. D 2005 & JF 2006
Fall	precip (mm) and air temp (C)	e.g. SON 2005
Summer	precip (mm) and air temp (C)	e.g. JJA 2005

Values are averaged across county.

Climate Variables

- Many climate variables correlated
- Selected climate variables based on hierarchal clusters
- Prioritized variables closer to the sampling period

Data Analysis

All possible regression models for the above variables; models were selected using a combination of following selection criteria:

- AICc
- Adjusted R²
- PRESS Statistic (leave one out validation)
- Mallow's Cp
- All Important BPJ

BIBI scores were Logit transformed prior to use to fit assumptions. I.e. a BIBI score from 0-100 functions like lot like a percent.

All variables were standardized prior to use in the regression.

Parameter changes are "deviations" from average conditions

Selected Model Output

Parameter	Estimate	SE	t	Р
Intercept	0.000	0.034	0.00	1.0000
Slope	0.118	0.055	2.13	0.0341
Drainage Area	0.189	0.056	3.38	0.0009
Winter Precip	0.077	0.035	2.19	0.0293
Spring Temp	-0.120	0.034	-3.50	0.0006
Impervious %	-0.649	0.095	-6.85	< 0.0001
USGS Gage	-0.251	0.097	-2.60	0.0100
Year	0.107	0.038	2.84	0.0049

Residual standard error: 0.528 on 233 degrees of freedom Multiple R-squared: 0.729, Adjusted R-squared: 0.721 F-statistic: 89.67 on 7 and 233 DF, P < 0.0001

Selection came down to adding a marginally significant fall temperature variable. For simplicity we left it out. Fit statistics were similar in both models.

BIBI values are normalized to the average.

In this case the data point is adjusted up. A value originally above the average would be adjusted down

-ogit BIBI

Log Drainage Area

Logit BIBI

Log Drainage Area

	Т	Trend Sites			Probabilistic		
Province	BIBI Shift	Slope	Dr Area	BIBI Shift	Slope	Dr Area	
Coastal Plain	6	0.095	-0.499	9	-0.615	-0.739	
Piedmont	5	-0.009	0.058	8	-0.394	-0.768	
Triassic Basin	3	-0.062	0.247	5	-0.624	-0.107	

Normalizing all points to their average

- Coastal Plain sites received a larger shift due to their smaller drainage areas and flatter slopes
- Triassic basin sites tend to have larger drainage areas, so receive less of an adjustment
- If a BIBI score of 40 or less is failing, these adjustments shift 62 sites above that threshold and 14 sites below

	Probabilistic Sites			
		Winter	Spring	
Province	Average	Precip +1	Temp -1	Both
Coastal Plain	9	15	17	20
Piedmont	8	11	13	17
Triassic Basin	5	8	10	14

Good and bad climate years:

- Consider a wetter than average winter and cooler than average spring
- The additional climate forcing moves many sites into a different category: Fair -> Good, etc.
- If a BIBI score of 40 or less is failing, both adjustments shift 154 sites above that threshold and 4 sites below.

Relationship to Stressors and Trends over Time

- How does adjusting BIBI scores affect your ability to detect patterns in the data?
- Regressed original BIBI scores and adjusted scores against impervious (%), median specific conductance, and sample year for both the trend and probabilistic data sets.
 - \triangleright R² values are shown.

Relationship to Stressors and Trends over Time

	Trend Sites (R ²)			Probabilistic Sites (R ²)		
Parameter	Original	Adjusted	Difference	Original	Adjusted	Difference
IMP %	0.678	0.699	+	0.366	0.400	+
SC	0.534	0.566	+	0.051	0.056	+
Year	0.029	0.029	0	0.025	0.014	-

- The adjusted BIBI values performed better for impervious and specific conductance parameters, and worse for the yearly trend
- Year has a 0.22 correlation with winter precipitation.
 - Part of the temporal trend can be accounted for by shifting climate over the 12 years

Closing Thoughts

- Variability unrelated to urbanization can hinder and confound our ability to assess impairment.
 - Small flat site on really hot year. Bad year or bad site?
 - Can it be compared fairly with a higher gradient site on a cool wet year?
 - This is especially true without trend data.
- Adjusting BIBI scores along those gradients can lead to better comparisons and inference
- Regardless of the tools you have, it's worthwhile investigating natural variability and effects on metric performance
- Consider adding these variables as artificial stressors into the BIBI itself

Jonathan Witt

Fairfax County Stormwater Planning Division Watershed Planning and Assessment Branch

jonathan.witt@fairfaxcounty.gov (703) 324-5500

