# The relationship between stream temperature and air temperature in Maryland streams



Michael Kashiwagi and Tony Prochaska MD Department of Natural Resources

## Global climate change

#### Greenhouse gases

- CO<sub>2</sub> has increased globally by 100 ppm (36%) over the last 250 years
- Fastest rate from 1995 2005

#### • Temperature

- Global mean surface temperature has risen 0.74°C over the last 100 years
- 1998 and 2005 warmest years on record







## Potential impacts on aquatic biota

- Rates of many chemical & biological processes function of temperature
- Reductions in biodiversity; loss of some cold and cool water species
- Lethal thermal limit may be exceeded for other aquatic species – extreme droughts and heat waves
- Range expansions/new invasions of invasive species

### Stream/air temperature studies

- Midwest
  - Pilgrim et al. 1998
  - Mohseni and Stefan 1999
- West
  - Neumann et al. 2003
- Nationwide
  - Easton and Scheller 1996
  - Mohseni et al. 2003
  - Bogan et al. 2003

#### Primary question

How will a projected increase in air temperature impact stream water temperatures in Maryland?

#### Objectives

- Examine the relationship between air and water temperatures in unimpaired Maryland watersheds
- Determine how stream water temperatures can be explained by air temperatures

#### **Temperature relationships**

- Physiographic region Highland, Eastern Piedmont, Coastal Plain
- Stream order
  - 1<sup>st</sup>, 2<sup>nd</sup>, 3<sup>rd</sup>
- Drainage area

<1000 acres, 1000-5000 acres, 5000-10000 acres, >10,000 acres

#### Temperature data

- Collected from 29 MBSS sites (20 Sentinel Sites)
- Unimpaired watersheds
  % Development
  Mean 3.1%
  % Impervious surface
  Mean 0.2%





#### Temperature data

- Temp logger data from June-August
- Average 3 day temperature
- Years (2005-2007)
- Water and air temp logger placed at each site





# Temperature sample sites



Average summer air and water temperatures



Coastal – 15 pairs of data



Piedmont – 10 pairs of data



Highland – 12 pairs of data



# Physiographic region results

| Region   | Water temp<br>range (°C) | Slope | R-square |
|----------|--------------------------|-------|----------|
| Highland | 10.1 - 24.1              | 0.722 | 0.818    |
| Piedmont | 13.6 - 25.8              | 0.687 | 0.723    |
| Coastal  | 15.2 - 25.7              | 0.699 | 0.711    |

ANCOVA - No difference based on physiographic region

# Stream order results

| Stream<br>order | Logger<br>pairs | Slope | R-square |
|-----------------|-----------------|-------|----------|
| 1st             | 18              | 0.781 | 0.802    |
| 2nd             | 14              | 0.756 | 0.777    |
| 3rd             | 5               | 0.908 | 0.874    |

# Drainage area results

| Drainage area<br>(acre) | Logger<br>pairs | Slope | R-square |
|-------------------------|-----------------|-------|----------|
| <1,000                  | 18              | 0.752 | 0.785    |
| 1,000 - 5,000           | 11              | 0.785 | 0.772    |
| 5,000 - 10,000          | 3               | 0.931 | 0.946    |
| >10,000                 | 5               | 0.791 | 0.864    |

## General results

- Linear relationship between air and water temperatures
- Air/water temperature rate is 0.7-0.8°C in unimpacted watersheds
- No difference in air/water temperature relationship based on physiographic region
- Potential increase in air/water temperature rate with increased stream size

### Current work

- Air and water temperature loggers deployed at all 2008 MBSS sites
  - Sentinel sites (1 year)
  - MBSS (6 months)
- Examine air/water temperature relationship across range of watershed landscape conditions





# Acknowledge

- Tony Prochaska
- Ann Schenk
- All MBSS field crews



