Integrating Maryland's Tidal and Nontidal Ecological Assessments

Mark Southerland, Roberto Llansó, Ward Slacum, and Beth Franks – *Versar, Inc.*

Anthony Prochaska – Maryland Department of Natural Resources

April 2, 2008

Outline

- Need for integrated assessments
- MBSS and LTB as long-term monitoring programs
- Comparability of current assessments
- Gaps in assessing Maryland's waters
- Future of integrated assessments

Need for Integrated Assessments

- Clean Water Act requires assessment of all waters
- Chesapeake Bay restoration is based on Tributary Strategies
- Water resource managers must look
 upstream
- Setting priorities requires comparable assessments

- Maryland Biological Stream Survey
 - Nontidal stream sampling since 1994
 - Probability-based with 84 watershed primary sampling units (PSUs)
 - 300 sites per year in 3- and 5-year snapshots
 - Reference-based indicators for fish, benthic macroinvertebrates, stream salamanders
 - Good
 - Fair
 - Poor
 - Very Poor

- Maryland Biological Stream Survey
 - Synoptic reports every 5 years at scale of
 - 8-digit watersheds (average of 90 mi²)
 - Trib basins
 - Counties
 - 305b biennial reports with pass-fail (10% of reference) by watershed
 - 303d listings of impaired waters using watershed means and confidence limits (proposed use of probability that number of stream miles degraded
 10% given confidence limit)

- Long-Term Benthic Monitoring Program
 - Tidal sampling since 1994
 - Probability-based with 6 strata
 - 150 sites per year within a moving average
 - Reference-based indicators for infaunal invertebrates
 - Meets goal
 - Marginally degraded
 - Degraded
 - Severely degraded

- Long-Term Benthic Monitoring Program
 - Annual report
 - State of Bay using 1 year of data with % pass-fail by 10 Trib Basins
 - 305b biennial report post-stratified by segment (MD half of 85) for % passing (failing ≤ 5% reference)
 - 303d listing uses a statistical test considering uncertainty that compares the % of area degraded with % expected in reference conditions

Other Programs

- Maryland Coastal Bays
 - 1990s synoptic assessment
 - 2000-2006 fixed site sampling with limited random sites
- Maryland's Eyes on the Bay
 - Fixed station monthly monitoring data
 - Continuous monitoring data
 - Water quality mapping data
- UMCES Integration & Application (IAN) Network
- NOAA integrated health assessment
- VA INSTAR and PA nontidal monitoring programs

Comparability of Assessments

Percent Degraded 2000-2004

Tributary Strategy Basin			
CHOPTANK RIVER			
LOWER EASTERN SHORE			
LOWER POTOMAC RIVER			
LOWER WESTERN SHORE			
MIDDLE POTOMAC*			
OCEAN COASTAL**			
PATAPSCO/BACK			
PATUXENT RIVER			
UPPER EASTERN SHORE			
UPPER POTOMAC*			
UPPER WESTERN SHORE			
YOUGHIOGHENY RIVER**			

*Partially included in LTB Lower Potomac **Basins not sampled by LTB

Comparability

 MBSS
 LTB
 Difference

 42%
 60%
 -18%

 60%
 45%
 15%

 21%
 72%
 -51%

 39%
 63%
 -24%

42%	69%	-27%
33%	69%	-36%
36%	61%	-25%
33%	43%	-10%

Reasons Assessments May Differ

- The assessment methods are not the same
 - Degradation threshold
 - Time period (2000-2004 in this analysis)
 - Spatial scale (Trib basin in this analysis)
- Gaps in waters are not sampled
- Unique situations in each watershed, such as
 - Extensive development in coastal zone
 - -Well-protected coastal zone
 - Heavy upstream loading
 - Unique natural conditions (e.g., deep waters)

Comparable Methods

- Both MBSS and LTB use invertebrate referencebased indicators of condition
- Thresholds of degradation are reference based, so that different condition classes that can be standardized
 - MBSS
 - PASS = (\geq 10% of reference)
 - » Good (4.0-5.0)
 - » Fair (3.0-3.9)
 - FAIL =
 - » Poor (2.0-2.9)
 - » Very poor (1.0-1.9)

• LTB:

- PASS = Meets goal (\geq 5% of reference)
- FAIL =
 - » Marginally degraded (2.7-2.9)
 - » Degraded (2.1-2.6)
 - » Severely degraded (1.0-2.0)

Gaps in Maryland's Waters

- LTB does not sample
 - Above head of tide (MLLW)
 - Shallows < 1 m depth</p>
 - Mainstem deep trough > 12 m depth (but assumed to be azoic)
- MBSS does not sample
 - Below head of tide
 - Large rivers > 4th order
 - Small streams < 1st order (on 1:100,000-scale map)

Gaps in Maryland's Waters

- Tidal waters are assessed by LTB (including Deep Trough)
 - Gap of up to 15% not assessed are nearshore shallows (based on NOAA data)
- Nontidal streams covered by MBSS
 - Gap of 6.8% are freshwater tidal
 - Gap of 1.5% are large rivers
 - Gap of up to 40% of miles missed are smallest streams (based on 1:24,000-scale map overlay in Montgomery County)

Unique Watersheds

- Extensive development in coastal zone
- Well-protected coastal zone
- Heavy upstream loading
- Unique natural conditions (e.g., deep waters)

What Do We Want From Integration?

- 1. Integrated reporting (with consistent condition classes)
 - Eyes on the Bay
 - Chesapeake Bay EcoCheck
- 2. Monitoring and assessment of gaps
 - Nearshore shallows
 - Freshwater tidal
 - Small streams
 - Large rivers
- 3. Better understanding of upstream influences
- 4. Incorporation of trends information

Future

Monitoring and Assessment of Gaps

- Feasibility of monitoring the gaps
 - Need appropriate fish and invertebrate sampling methods for tidal freshwaters (demonstrated in 1998 MBSS study)
- Who should monitor these gaps?
 - EPA national survey
 - MBSS (1999 survey design for tidal freshwaters)
 - Counties
 - Other organizations

Better Understanding of Upstream Influences

- Potential for learning from assessment mismatches
- Partition MBSS-LTB data by land use (as a predictor of coastal development influence)
- Link assessment to SPARROW model results
- Smaller scale studies to better understand downstream effects
 - -MBSS 1998-1999 and 2006 fish study
 - -NOAA 2007 benthic study

2006 MBSS Fish Study

Future

2007 NOAA Benthic Study

- Corsica River Watershed
- Magothy River Watershed
- Rhode/West River Watershed

Incorporating Trends Information

- 10-year MBSS and LTB trends analysis
- Maryland DNR CORE/TREND program
 - 111 sites, 84 TREND and 27 CORE
 - First sites sampled in 1976
 - Current sampling at annual to 5-year intervals
 - Surber in riffles and modified Hester-Dendy
 - EPT and other metrics of stream health
 - Could be tied to areawide assessments to extrapolate trends and possible downstream time lags

Future

No change

Future

Future of Integrated Assessments

- 1. Integrated reporting (with consistent condition classes) is feasible
- 2. Monitoring and assessment of gaps requires some method development and funding
- 3. Better understanding of upstream influences can be obtained from studies at smaller scales
- *4. Potential for incorporation of trends information* from fixed site programs

