The Benthic Macroinvertebrate Assemblage Related to Stream Conditions in Smith Creek, Harrisonburg, Virginia, Prior to Restoration

> Tara Willey and Reese Voshell Virginia Tech Department of Entomology

Funding From: Canaan Valley Institute, U.S. Forest Service

Stream Restoration

- Since 1990 government agencies have spent \$7.5 billion
- Assumption that recovery of biological integrity will accompany stream restoration efforts
- When? How? If? Why or Why Not?
 - Poorly understood because comprehensive biological monitoring seldom accompanies restoration projects
- Estimated to be only 10% nationally and only 6% Chesapeake Bay projects

Agricultural Land Use - Cattle Grazing

- Primary Impacts on Streams
 - Erosion, sedimentation from loss of vegetation and trampling
 - Nutrients, organic loading from urine, feces

Erosion, Sedimentation

Nutrients, Organic Loading

Smith Creek Restoration Project

- Team of scientists, primarily from James Madison University
 - Terrestrial botany
 - Terrestrial vertebrates
 - Fluvial geomorphology
 - Aquatic ecology
 - Fisheries
 - Microbiology
 - Water chemistry
 - Etc.
- Virginia Tech
 - Macroinvertebrates

Smith Creek Restoration Overview

- Smith Creek agricultural stream located in Harrisonburg, VA
- Restoration funded by CREP and other programs
- Bruce Farm
 - Cattle removed during winter 2006
 - Trees planted in spring 2006
 - Sampling began spring 2006

Purpose of Study

• Long-term: Follow recovery of biological integrity at all levels in relation to changing environmental conditions brought about by stream restoration

– Answer questions: When? How? If? Why or Why Not?

- Short-term: Quantify biota and determinant environmental variables before restoration efforts (baseline)
 - Virginia Tech component: benthic macroinvertebrate assemblage (M.S. thesis)

Sampling Methods

- Modified Stovepipe Sampler
- Sampler inserted into stream substrate and contents removed
- Macroinvertebrates, organic matter, and substrate are collected and measured
- Facilitates quantitative measurements and associations of macroinvertebrates and their habitat and food

Lab Methods

 Macroinvertebrates identified (mostly genus) and counted

Independent variables

(environmental factors)

current, depth % deciduous leaves, % wood % pasture vegetation

Related to Sediment D₅₀ Fredle index Trask's sorting coefficient %fines, %gravel %pebble, %cobble

Related to Nutrients epilithic biomass epilithic chlorophyll *a* FBOM CBOM % moss

Dependent variables

(macroinvertebrate assemblage)

10 assemblage metrics; 15 dominant taxa densities

Community Structure

Spring and Summer 2006

Total Richness Spring and Summer 2006

ANOVA and Tukey - α = 0.05

Relationship Betweeen % Scrapers and AFDM ug/cm2

80.00 $R^2 = .2253$ 70.00 P = 0.000360.00 . \diamond 50.00 Restoration 40.00 Mixed Use ٢ d. \mathbf{O} 30.00 \mathbf{i} \sim 20.00 \diamond \mathbf{O} Ç 10.00 \diamond 0.00 0.00 20.00 40.00 60.00 80.00 100.00 140.00 160.00 120.00 AFDM ug/cm2

(Epilithic Biomass)

Relationship Between % Scrapers and Epilithic Biomass

Hydropsychidae Density Related to Chlorophyll A(Epilithic) Spring and Summer 2006

Chlorophyll A - ug/cm2

Relationship between Hydropsychidae Density and Epilithic Chlorophyll a

Examples of Relationships Between Macroinvertebrates and Mineral Substrate

[Regression; $\alpha = 0.05$]

Macroinvertebrate Measure	Environmental Variable	P Value	R ² Value
Density of <i>Psephenus herricki</i> (water pennies)	% Fines	0.9123	0.0002
Number of Clinger Taxa	% Cobble	0.1572	0.0381

