Validation and Refinement of a Stream Salamander IBI for Maryland

Mark Southerland and Ginny Rogers

Versar, Inc.

March 31, 2010

Acknowledgements

- Scott Stranko, Maryland Biological Stream Survey, Maryland Department of Natural Resources
- Rachel Gauza, Montgomery County Department of Environmental Protection
- Robin Jung Brown, formerly USGS-Patuxent Wildlife Research Center

Outline

- Why Stream Salamanders?
 - Utility as indicators
 - Maryland Biological Stream Survey (MBSS)
- Stream Salamander Index of Biotic Integrity (IBI) for Maryland
 - SS-IBI Development
 - Implementation
 - Validation and Refinement
- Conclusions

Stream Salamanders as Indicators

- Ubiquitous
- Abundant
- Life history (longevity, long aquatic larval periods, relatively stable populations, small home ranges)
- Physiology (moist, permeable skin required for respiration)
- Responds to multiple stressors

Good indicators of environmental health

Stream Salamanders in Maryland

- N. two-lined salamander, Eurycea b. bislineata
- Longtail salamander, Eurycea I. longicauda
- N. dusky salamander, Desmognathus f. fuscus
- Mtn. dusky salamander, Desmognathus ochrophaeus
- Seal salamander, Desmognathus monticola
- Red salamander, Pseudotriton ruber
- Eastern mud salamander, Pseudotriton montanus
- N. spring salamander, Gyrinophilus p. porphyriticus

D. monticola

D. fuscus

Pseudotriton montanus

Gyrinophilus porphyriticus

Maryland Biological Stream Survey

- Sampled more than 3,000 stream sites over three Rounds (1995-1997, 2000-2004, 2007-2009)
- Uses probability-based design stratified on watershed and stream order
- Measures water chemistry, physical habitat, and biological communities
- Developed reference-based indicators of integrity for fish, benthic invertebrates, and physical habitat
- Round 3 added sampling for streamside salamanders at all sites

Indicator Development and Implementation

- Develop sampling methods
- Create indicator development dataset
- Develop indicator that works
- Implement sampling in large-scale monitoring
- Validate or refine indicator for
 - Practical sampling methods
 - Full range of streams
- > Final indicator

Development of SS-IBI

- Developed electrofishing, quadrat, and transect sampling methods
- Developed four metric SS-IBI for Non-Coastal Plain Maryland with 90% classification efficiency
 - Number of species
 - Number of salamanders
 - Percentage of adults
 - Percentage of intolerants
- Estimated that stream salamander searches would require 10% increase in sampling effort of MBSS

Indicator Validation

- Apply original SS-IBI to salamander sampling results from
 - MBSS Round 3
 - Montgomery County, Maryland, Department of Environmental Protection (DEP)
- If results are good, validation is complete
- If results are significantly poorer, refine the SS-IBI, considering
 - Sampling methods
 - Stream types sampled

Salamander Sampling Methods

- 15-m transects
 - Turn all cover
- 4-m² quadrats
 - Rake all substrate
- Electrofishing

Salamander Sampling Methods

- Original SS-IBI used two parallel 15-m transects and two 2-m by 2-m quadrats
- MBSS Round 3 used single 25-m transect and electrofishing
 - > Transect sampled on bank selected at random for unbiased estimates of salamander numbers
- Montgomery County used 25-m transect and electrofishing methods
 - ➤ Transect sampled on bank selected for "best available habitat"

SS-IBI Validation Result

- Classification efficiencies (CE) for Reference sites
 < 50%
 - > This is inadequate for Final Indicator
- Need to investigate
 - Sampling methods
 - Stream types sampled

SS-IBI Salamander Sites

MBSS Salamander Sites

MBSS Salamander Data

- In Round 3 MBSS collected 3262 stream salamanders at 558 sites sampled (including Coastal Plain)
- Eurycea bislineata comprised 84% of all salamanders collected
- 273 sites (49% of sites) had 0 salamanders

Use of random bank choice results in many zero sites

MC Salamander Data

- In 2009 Montgomery County DEP collected
 385 stream salamanders at 27 sites sampled
- Eurycea bislineata comprised 92% of all salamanders collected
- No sites had 0 salamanders

> Use of "best available habitat" strengthens indicator

Number of Salamanders MBSS in Montg. Co. vs. Montg. Co.

Sampling Method

	All Sites			Reference Sites		
	Number Individuals	Number of Intolerants		Number Individuals	,	Number of Intolerants
2001-2002	25		6		26	11
2007-2009	6		1		14	3
MontCo	14		2			

- Sampling methods results:
 - SS-IBI > MC DEP > MBSS
- ➢ Revise threshold from 5 to 3.75 to accommodate lower sampling numbers

Stream Types Statewide

- How does the range of stream types sampled by the original SS-IBI development dataset compare with the Maryland statewide streams sampled by MBSS Round 3?
 - More "reference" sites with 0 salamanders
 - All these sites are streams larger than 1mi² (640 ac)
 - More high SS-IBI sites with lower % forest in catchment
 - All are small streams with good riparian buffer
 - ➤ Allow good riparian to substitute for forest in catchment

Focus on Small Streams

SS-IBI Scores at Reference and Degraded Sites (Catchment < 300 ac)

SS-IBI Scores at Reference and Degraded Sites (All Sites)

Focus on Small Streams

For Non-Coastal Plain streams:

	Sites Catchment < 300 ac	Sites All Streams
Reference	10	79
Degraded	22	103

Focus on Small Streams

For Non-Coastal Plain streams:

	CE Catchment < 300 ac	CE All Streams
Reference	70%	43%
Degraded	86%	73%
Total	81%	60%

> Restrict SS-IBI to small stream < 300 ac

Conclusions

- SS-IBI is not effective on full range of stream types in Maryland
- ➤ Restrict SS-IBI to small streams < 300 ac (essentially a vertebrate IBI, where salamanders substitute for fish)
- SS-IBI can be adjusted to perform well in with sampling methods practical in large-scale monitoring
- ➤ Revise degradation threshold from 5 to 3.75 to accommodate lower salamanders

