

Department of the Environment

Stressor Identification The First Step in Addressing MD's Non-tidal Biological Impairments

Lee Currey MDE TMDL Development Program Stressor Identification Section

Prepared for Association of Mid-Atlantic Aquatic Biologists Workshop Cacapon State Park, Berkeley Springs, WV

March 31 - April 1, 2010

Allison O'Hanlon & John Holt Presenters

Number of Impairments

Impaired?... Cause?

Impaired?... Cause?

Assessment scale: 8-digit watersheds

- MDE Stressor Identification Section
- MD DNR MBSS
- EPA ORD
- University Of MD
- Versar

IR Biological Assessment

- Build on previous efforts
- Use concepts from the field of epidemiology
- Hill's Postulates (1965)

Stressor Identification Procedure

- MBSS Round 2 Dataset
 - Paired with IBI
 - Most Comprehensive
 - Consistent
 - Probabilistic
- Parameter Groups
 - Sediment
 - Habitat
 - Water Chemistry
 - Land Use/ Other sources

- Determine stressor presence/absence
- Allow for multiple data types
 - Water quality Standards (e.g. Dissolved Oxygen)
 - Presence/absence (e.g. Channelization)
 - Categorical optimal, sub-optimal, <u>marginal</u>, or <u>poor</u> (e.g. Instream Habitat)
 - Biological gradient (e.g. Imperviousness, embeddedness)

Parameter Target Examples

e.g., Sediment group parameters

Parameter	Data Type	larget
Channelization	Presence/ Absence	Present
Instream Habitat	Categorical	6 (Poor) and 11 (Marginal)
Pool/eddy/glide Quality	Categorical	6 (Poor) and 11 (Marginal)
Riffle/run Quality	Categorical	6 (Poor) and 11 (Marginal)
Velocity/ Depth Diversity	Categorical	6 (Poor) and 11 (Marginal)
Concrete/Gabion	Presence/ Absence	Present
Beaver Pond	Presence/ Absence	Present
Riparian Buffer	Continuous (Gradient)	<1 meter
Low Shading	Proportion (Gradient)	<50%

Analytical Framework

Analysis Terms:

- Odds Ratio (Similar to Relative Risk)
 - Simple or Stratified Calculation
 - Confidence intervals (common or exact)

• Attributable Risk

- Estimate of % degraded sites in a watershed that are associated with a stressor
- Also calculated for stressor groups

e.g., Lower North Branch Patapsco

Controls

Calculating Analysis Terms

	Cases (Very Poor to Poor)	Controls (Fair to Good)
Channelization Present	6	9
Channelization Absent	6	81
Total	12	90
% w/ Stressor Present	50%	9%

 $- Odds Ratio = \frac{\frac{6}{9}}{\frac{9}{81}} \approx 9$

Attributable risk = $50\% - 9\% \approx 41\%$

e.g., Lower North Branch Patapsco

MDE Model Output: Stressor/Source Summary

Group	Stressor/ Source	Attributable Risk		
CHEMISTRY	high chlorides	78%		
	high sulfates	79%	87%	
	high conductivity	86%		
HABITAT	channelization present	41%	41%	
SEDIMENT	extensive bar formation present	28%	70%	95%
	channel alteration poor	29%		
	moderate bar formation present	58%		
	channel alteration marginal to poor	59%		
SOURCE	low % of forest in watershed	25%	6 6 6 6 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7	
	high % of transportation in watershed	41%		
	low % of forest in 60m buffer	50%		
	high % of low intensity urban in watershed	61%		
	high % of transportation in 60m buffer	61%		
	high % of high intensity urban in watershed	67%		
	high % of high intensity urban in 60m buffer	71%		
	high % of low intensity urban in 60m buffer	77%		
	high impervious surface in watershed	80%		

e.g., Lower North Branch Patapsco

Putting it all together...

Watershed Specific

Patapsco LNB Conclusions & Actions

BSID Conclusions

- Probable cause: inorganic pollutants (i.e., chlorides, conductivity, sulfate).
- Probable cause: flow/sediment related stressors.
- No nutrient stressors

BSID Resulting Actions

- Inform monitoring: Additional monitoring of priority inorganic pollutants
- Direct reporting: Sulfates and Chlorides impairments added to 2010 IR
- Direct management: TSS impairment TMDL in review
- Direct management: Eutrophication WQA approved in Sept2009 by EPA

2009 Completed BSID Reports

WATERSHED	TMDLs SUPPORTED	
Anteitam Creek	TSS, Phosphorus, TN	
Cabin John Creek	TSS	
Casselman River	рН	
Evitts Creek	TSS	
Gywnns Falls	TSS	
Jones Falls	TSS	
Little Patuxent River	TSS	
Lower North Branch Patapsco	TSS	
Seneca Creek	TSS	
Town Creek	N/A	
Wills Creek	TSS	

BSID Timeline versus Monitoring

2010 Scheduled BSID Analyses

*Anacostia

MDE

*Catoctin Creek

*Deep Creek

*Double Pipe Creek

*Lower Monocacy River

*Middle Chester River

*Upper Monocacy River

*Upper North Branch Potomac

Aberdeen P.G.

*Bynum Run

*Liberty Reservoir

Licking Creek

Lower North Branch Potomac

*Lower Gunpowder Falls

*In Review

Middle Patuxent River *Patuxent River Upper *Potomac River MO Cnty *Potomac River WA Cnty *Rock Creek South Branch Patapsco St. Mary's *Upper Chester River **Upper Pocomke** West River Atkisson Reservoir **Bush River** L Susquehanna River Lower Winters Run Swan Creek

Watershed BSID Schedule

2011

MDE

Back River Baltimore Harbor Loch Raven Reservoir Magothy River Severn River South River West Chesapeake Bay Western Branch

2012

Mattawoman Creek Patuxent River lower Patuxent River middle Piscataway Creek Port Tobacco River Potomac River L tidal Potomac River U tidal Rocky Gorge Dam

2013

Conococheague Creek Georges Creek Little Tonoloway Creek Little Youghiogheny R Marsh Run Potomac River AL Cnty Potomac River FR Cnty Youghiogheny River

2014

Lower Choptank Lower Pocomoke River Lower Wicomico River Marshyhope Creek Nanticoke River Transquaking River Upper Choptank

- Challenges
 - Limited sample size
 - Scale
 - Uncertainty in targets
 - Accounting for "all" stressors
- However...
 - It provides a systematic process for moving forward with addressing non-tidal biological impairments

Maryland Department of the Environment

TMDL Development Program

Lee Currey Icurrey@mde.state.md.us

1800 Washington Boulevard | Baltimore, MD 21230-1718 410-537-3000 | TTY Users: 1-800-735-2258 www.mde.state.md.us